(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
minus(0, Y) → 0
minus(s(X), s(Y)) → minus(X, Y)
geq(X, 0) → true
geq(0, s(Y)) → false
geq(s(X), s(Y)) → geq(X, Y)
div(0, s(Y)) → 0
div(s(X), s(Y)) → if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) → X
if(false, X, Y) → Y
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
minus(s(X), s(Y)) →+ minus(X, Y)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [X / s(X), Y / s(Y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)